Organic Pharmaceutical Chemistry IV

Fifth Stage

Lecture 13

Solid Phase Chemistry

Advantages

- o excess of reagents can be used to drive reactions to completion
- o purification procedures achieved by simple filtrations which can be easily automated
- Well suited for making large libraries

Solid Phase Chemistry

- Disadvantages
 - development of reaction conditions requires more work than in solution reactions
 - Solid support are more sensitive to steric effects
 - reactions are more difficult to monitor

Solid Phase Chemistry

- Some what in between
 - □overall costs for the synthesis of large libraries can compare favorably with solution synthesis
 - □ linker molecules have to be designed which are compatible with the polymeric matrix and the chemistry used for library synthesis

Solution Phase Chemistry

Advantages

- most reactions and reagents have been studied in solution
- usually no excess of reagents have to be used
- solvent effects can be studied and altered readily
- *steric effects are usually less pronounced in solution and can be overcome more easily by using more drastic reaction conditions
- reaction conditions are usually adapted to a large variety of substituents

Solution Phase Chemistry

- Disadvantages
 - > extensive and time consuming
 - >chromatographic purification procedures are often necessary
 - > side products have to be separated and analyzed
 - > automation usually requires more initial effort

Solid phase synthesis versus synthesis in solution

Solid-phase chemistry

- large libraries
- split mixed synthesis
- linear approaches

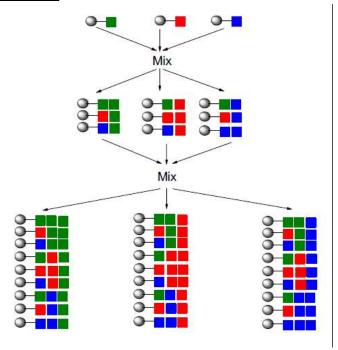
Solution-phase chemistry

- Small libraries
- parallel synthesis
- convergent approaches

Example on solution phase

Intermediate synthesis

- Polyethylene glycol
- Dendrimers
- Fluorous phases
- Complementary DNA

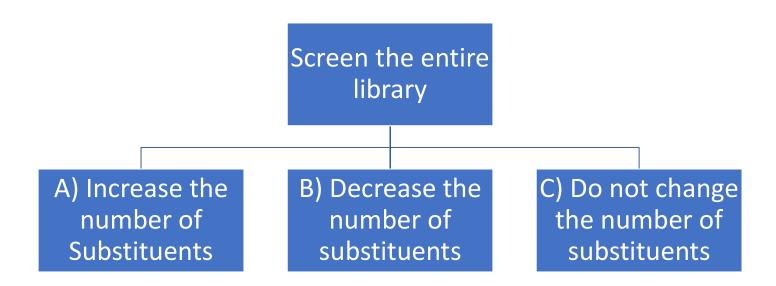

Intermediate synthesis

$$H = \begin{pmatrix} 0 \\ 0 \end{pmatrix}_{n} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}_{n} + \begin{pmatrix} 1$$

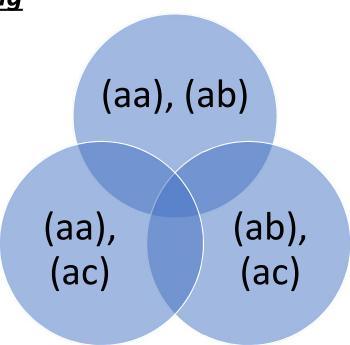
1. One-bead one-compound strategy

- Specific quantity of beads is allocated for each possible structure in the library:
- + the simplicity of analysis and screening
- Keeping the beads separate
- deal with a large number of syntheses in parallel

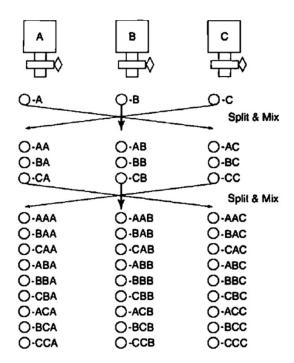
2. <u>Iterative deconvolution</u>



3. Subtractive deconvolution


Make a library with different substitutions and screen for activity

Make sub libraries each missing one substitution and screen for activity Resynthesize the sub library that has the least activity


4. Bogus-coin detection

5. Orthogonal pooling

6. Positional scanning

Problems with mixtures

- × Complex mixtures with only one or a few active structures can have solubility problems
- × The inactive compounds contribute to the total ionic concentration but not to the activity
- × Compounds that have a common scaffold will have many active species (false positive)
- × Partial binding of inactive structures can sometimes prevent an active structure from showing full activity (false negative)

